Message ID | 20220928084509.2758974-8-dario.binacchi@amarulasolutions.com |
---|---|
State | New |
Headers | show |
Series |
|
Related | show |
Hi Michael, On Wed, Sep 28, 2022 at 10:45 AM Dario Binacchi < dario.binacchi@amarulasolutions.com> wrote: > From: Michael Trimarchi <michael@amarulasolutions.com> > > Add support for imx8mn architecture in order to run the NAND > in fast edo mode. > > Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> > Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com> > > --- > > drivers/mtd/nand/raw/mxs_nand.c | 200 +++++++++++++++++++++++++++++ > drivers/mtd/nand/raw/mxs_nand_dt.c | 66 ++++++---- > include/mxs_nand.h | 3 + > 3 files changed, 242 insertions(+), 27 deletions(-) > > diff --git a/drivers/mtd/nand/raw/mxs_nand.c > b/drivers/mtd/nand/raw/mxs_nand.c > index 7893e9d7e343..65eab4c8088a 100644 > --- a/drivers/mtd/nand/raw/mxs_nand.c > +++ b/drivers/mtd/nand/raw/mxs_nand.c > @@ -14,6 +14,7 @@ > */ > > #include <common.h> > +#include <clk.h> > #include <cpu_func.h> > #include <dm.h> > #include <dm/device_compat.h> > @@ -26,10 +27,12 @@ > #include <asm/io.h> > #include <asm/mach-imx/regs-bch.h> > #include <asm/mach-imx/regs-gpmi.h> > +#include <linux/delay.h> > #include <linux/errno.h> > #include <linux/mtd/rawnand.h> > #include <linux/sizes.h> > #include <linux/types.h> > +#include <linux/math64.h> > > #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 > > @@ -49,6 +52,10 @@ > #endif > > #define MXS_NAND_BCH_TIMEOUT 10000 > +#define USEC_PER_SEC 1000000 > +#define NSEC_PER_SEC 1000000000L > + > +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) > > struct nand_ecclayout fake_ecc_layout; > > @@ -1344,6 +1351,196 @@ err1: > return ret; > } > > +/* > + * <1> Firstly, we should know what's the GPMI-clock means. > + * The GPMI-clock is the internal clock in the gpmi nand controller. > + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period > + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. > + * > + * <2> Secondly, we should know what's the frequency on the nand chip > pins. > + * The frequency on the nand chip pins is derived from the GPMI-clock. > + * We can get it from the following equation: > + * > + * F = G / (DS + DH) > + * > + * F : the frequency on the nand chip pins. > + * G : the GPMI clock, such as 100MHz. > + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP > + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD > + * > + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, > + * the nand EDO(extended Data Out) timing could be applied. > + * The GPMI implements a feedback read strobe to sample the read data. > + * The feedback read strobe can be delayed to support the nand EDO > timing > + * where the read strobe may deasserts before the read data is valid, > and > + * read data is valid for some time after read strobe. > + * > + * The following figure illustrates some aspects of a NAND Flash read: > + * > + * |<---tREA---->| > + * | | > + * | | | > + * |<--tRP-->| | > + * | | | > + * __ ___|__________________________________ > + * RDN \________/ | > + * | > + * /---------\ > + * Read Data --------------< >--------- > + * \---------/ > + * | | > + * |<-D->| > + * FeedbackRDN ________ ____________ > + * \___________/ > + * > + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. > + * > + * > + * <4> Now, we begin to describe how to compute the right RDN_DELAY. > + * > + * 4.1) From the aspect of the nand chip pins: > + * Delay = (tREA + C - tRP) {1} > + * > + * tREA : the maximum read access time. > + * C : a constant to adjust the delay. default is 4000ps. > + * tRP : the read pulse width, which is exactly: > + * tRP = (GPMI-clock-period) * DATA_SETUP > + * > + * 4.2) From the aspect of the GPMI nand controller: > + * Delay = RDN_DELAY * 0.125 * RP {2} > + * > + * RP : the DLL reference period. > + * if (GPMI-clock-period > DLL_THRETHOLD) > + * RP = GPMI-clock-period / 2; > + * else > + * RP = GPMI-clock-period; > + * > + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period > + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD > + * is 16000ps, but in mx6q, we use 12000ps. > + * > + * 4.3) since {1} equals {2}, we get: > + * > + * (tREA + 4000 - tRP) * 8 > + * RDN_DELAY = ----------------------- {3} > + * RP > + */ > +static void mxs_compute_timings(struct nand_chip *chip, > + const struct nand_sdr_timings *sdr) > +{ > + struct mxs_nand_info *nand_info = nand_get_controller_data(chip); > + unsigned long clk_rate; > + unsigned int dll_wait_time_us; > + unsigned int dll_threshold_ps = nand_info->max_chain_delay; > + unsigned int period_ps, reference_period_ps; > + unsigned int data_setup_cycles, data_hold_cycles, > addr_setup_cycles; > + unsigned int tRP_ps; > + bool use_half_period; > + int sample_delay_ps, sample_delay_factor; > + u16 busy_timeout_cycles; > + u8 wrn_dly_sel; > + u32 timing0; > + u32 timing1; > + u32 ctrl1n; > + > + if (sdr->tRC_min >= 30000) { > + /* ONFI non-EDO modes [0-3] */ > + clk_rate = 22000000; > + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; > + } else if (sdr->tRC_min >= 25000) { > + /* ONFI EDO mode 4 */ > + clk_rate = 80000000; > + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; > + debug("%s, setting ONFI onfi edo 4\n", __func__); > + } else { > + /* ONFI EDO mode 5 */ > + clk_rate = 100000000; > + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; > + debug("%s, setting ONFI onfi edo 5\n", __func__); > + } > + > + /* SDR core timings are given in picoseconds */ > + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate); > + > + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); > + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); > + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); > + busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, > period_ps); > + > + timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) > | > + (data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) | > + (data_setup_cycles << > GPMI_TIMING0_DATA_SETUP_OFFSET); > + timing1 = (busy_timeout_cycles * 4096) << > GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET; > + > + /* > + * Derive NFC ideal delay from {3}: > + * > + * (tREA + 4000 - tRP) * 8 > + * RDN_DELAY = ----------------------- > + * RP > + */ > + if (period_ps > dll_threshold_ps) { > + use_half_period = true; > + reference_period_ps = period_ps / 2; > + } else { > + use_half_period = false; > + reference_period_ps = period_ps; > + } > + > + tRP_ps = data_setup_cycles * period_ps; > + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; > + if (sample_delay_ps > 0) > + sample_delay_factor = sample_delay_ps / > reference_period_ps; > + else > + sample_delay_factor = 0; > + > + ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET); > + if (sample_delay_factor) > + ctrl1n |= (sample_delay_factor << > GPMI_CTRL1_RDN_DELAY_OFFSET) | > + GPMI_CTRL1_DLL_ENABLE | > + (use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0); > + > + writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0); > + writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1); > + > + /* > + * Clear several CTRL1 fields, DLL must be disabled when setting > + * RDN_DELAY or HALF_PERIOD. > + */ > + writel(GPMI_CTRL1_CLEAR_MASK, > &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr); > + writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set); > + > + clk_set_rate(nand_info->gpmi_clk, clk_rate); > + > + /* Wait 64 clock cycles before using the GPMI after enabling the > DLL */ > + dll_wait_time_us = USEC_PER_SEC / clk_rate * 64; > + if (!dll_wait_time_us) > + dll_wait_time_us = 1; > + > + /* Wait for the DLL to settle. */ > + udelay(dll_wait_time_us); > +} > + > +static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr, > + const struct nand_data_interface *conf) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + const struct nand_sdr_timings *sdr; > + > + sdr = nand_get_sdr_timings(conf); > + if (IS_ERR(sdr)) > + return PTR_ERR(sdr); > + > + /* Stop here if this call was just a check */ > + if (chipnr < 0) > + return 0; > + > + /* Do the actual derivation of the controller timings */ > + mxs_compute_timings(chip, sdr); > + > + return 0; > +} > + > int mxs_nand_init_spl(struct nand_chip *nand) > { > struct mxs_nand_info *nand_info; > @@ -1432,6 +1629,9 @@ int mxs_nand_init_ctrl(struct mxs_nand_info > *nand_info) > nand->read_buf = mxs_nand_read_buf; > nand->write_buf = mxs_nand_write_buf; > > + if (nand_info->gpmi_clk) > + nand->setup_data_interface = mxs_nand_setup_interface; > + > /* first scan to find the device and get the page size */ > if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) > goto err_free_buffers; > diff --git a/drivers/mtd/nand/raw/mxs_nand_dt.c > b/drivers/mtd/nand/raw/mxs_nand_dt.c > index 94ee7ed9ec83..a922a22b2730 100644 > --- a/drivers/mtd/nand/raw/mxs_nand_dt.c > +++ b/drivers/mtd/nand/raw/mxs_nand_dt.c > @@ -22,22 +22,27 @@ > > struct mxs_nand_dt_data { > unsigned int max_ecc_strength_supported; > + int max_chain_delay; /* See the async EDO mode */ > }; > > static const struct mxs_nand_dt_data mxs_nand_imx6q_data = { > .max_ecc_strength_supported = 40, > + .max_chain_delay = 12000, > }; > > static const struct mxs_nand_dt_data mxs_nand_imx6sx_data = { > .max_ecc_strength_supported = 62, > + .max_chain_delay = 12000, > }; > > static const struct mxs_nand_dt_data mxs_nand_imx7d_data = { > .max_ecc_strength_supported = 62, > + .max_chain_delay = 12000, > }; > > static const struct mxs_nand_dt_data mxs_nand_imx8qxp_data = { > .max_ecc_strength_supported = 62, > + .max_chain_delay = 12000, > }; > > static const struct udevice_id mxs_nand_dt_ids[] = { > @@ -72,8 +77,10 @@ static int mxs_nand_dt_probe(struct udevice *dev) > int ret; > > data = (void *)dev_get_driver_data(dev); > - if (data) > + if (data) { > info->max_ecc_strength_supported = > data->max_ecc_strength_supported; > + info->max_chain_delay = data->max_chain_delay; > + } > > info->dev = dev; > > @@ -92,44 +99,49 @@ static int mxs_nand_dt_probe(struct udevice *dev) > > info->use_minimum_ecc = dev_read_bool(dev, "fsl,use-minimum-ecc"); > > - if (IS_ENABLED(CONFIG_CLK) && IS_ENABLED(CONFIG_IMX8)) { > + if (IS_ENABLED(CONFIG_CLK) && > + (IS_ENABLED(CONFIG_IMX8) || IS_ENABLED(CONFIG_IMX8M))) { > /* Assigned clock already set clock */ > struct clk gpmi_clk; > > - ret = clk_get_by_name(dev, "gpmi_io", &gpmi_clk); > - if (ret < 0) { > + info->gpmi_clk = devm_clk_get(dev, "gpmi_io"); > + > + if (IS_ERR(info->gpmi_clk)) { > + ret = PTR_ERR(info->gpmi_clk); > debug("Can't get gpmi io clk: %d\n", ret); > return ret; > } > > - ret = clk_enable(&gpmi_clk); > + ret = clk_enable(info->gpmi_clk); > if (ret < 0) { > debug("Can't enable gpmi io clk: %d\n", ret); > return ret; > } > > - ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk); > - if (ret < 0) { > - debug("Can't get gpmi_apb clk: %d\n", ret); > - return ret; > - } > - > - ret = clk_enable(&gpmi_clk); > - if (ret < 0) { > - debug("Can't enable gpmi_apb clk: %d\n", ret); > - return ret; > - } > - > - ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk); > - if (ret < 0) { > - debug("Can't get gpmi_bch clk: %d\n", ret); > - return ret; > - } > - > - ret = clk_enable(&gpmi_clk); > - if (ret < 0) { > - debug("Can't enable gpmi_bch clk: %d\n", ret); > - return ret; > + if (IS_ENABLED(CONFIG_IMX8)) { > + ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk); > + if (ret < 0) { > + debug("Can't get gpmi_apb clk: %d\n", ret); > + return ret; > + } > + > + ret = clk_enable(&gpmi_clk); > + if (ret < 0) { > + debug("Can't enable gpmi_apb clk: %d\n", > ret); > + return ret; > + } > + > + ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk); > + if (ret < 0) { > + debug("Can't get gpmi_bch clk: %d\n", ret); > + return ret; > + } > + > + ret = clk_enable(&gpmi_clk); > + if (ret < 0) { > + debug("Can't enable gpmi_bch clk: %d\n", > ret); > + return ret; > + } > } > > ret = clk_get_by_name(dev, "gpmi_bch_apb", &gpmi_clk); > diff --git a/include/mxs_nand.h b/include/mxs_nand.h > index 741dc8734eae..bb5b84b8c26e 100644 > --- a/include/mxs_nand.h > +++ b/include/mxs_nand.h > @@ -12,6 +12,7 @@ > #include <asm/cache.h> > #include <nand.h> > #include <asm/mach-imx/dma.h> > +#include <clk.h> > > /** > * @gf_len: The length of Galois Field. (e.g., 13 or 14) > @@ -43,6 +44,7 @@ struct mxs_nand_info { > struct nand_chip chip; > struct udevice *dev; > unsigned int max_ecc_strength_supported; > + int max_chain_delay; > bool use_minimum_ecc; > int cur_chip; > > @@ -59,6 +61,7 @@ struct mxs_nand_info { > > struct mxs_gpmi_regs *gpmi_regs; > struct mxs_bch_regs *bch_regs; > + struct clk *gpmi_clk; > > /* Functions with altered behaviour */ > int (*hooked_read_oob)(struct mtd_info *mtd, > -- > 2.32.0 > > All the series applied to nand-next, thanks! Dario
diff --git a/drivers/mtd/nand/raw/mxs_nand.c b/drivers/mtd/nand/raw/mxs_nand.c index 7893e9d7e343..65eab4c8088a 100644 --- a/drivers/mtd/nand/raw/mxs_nand.c +++ b/drivers/mtd/nand/raw/mxs_nand.c @@ -14,6 +14,7 @@ */ #include <common.h> +#include <clk.h> #include <cpu_func.h> #include <dm.h> #include <dm/device_compat.h> @@ -26,10 +27,12 @@ #include <asm/io.h> #include <asm/mach-imx/regs-bch.h> #include <asm/mach-imx/regs-gpmi.h> +#include <linux/delay.h> #include <linux/errno.h> #include <linux/mtd/rawnand.h> #include <linux/sizes.h> #include <linux/types.h> +#include <linux/math64.h> #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 @@ -49,6 +52,10 @@ #endif #define MXS_NAND_BCH_TIMEOUT 10000 +#define USEC_PER_SEC 1000000 +#define NSEC_PER_SEC 1000000000L + +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) struct nand_ecclayout fake_ecc_layout; @@ -1344,6 +1351,196 @@ err1: return ret; } +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. + * C : a constant to adjust the delay. default is 4000ps. + * tRP : the read pulse width, which is exactly: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16000ps, but in mx6q, we use 12000ps. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- {3} + * RP + */ +static void mxs_compute_timings(struct nand_chip *chip, + const struct nand_sdr_timings *sdr) +{ + struct mxs_nand_info *nand_info = nand_get_controller_data(chip); + unsigned long clk_rate; + unsigned int dll_wait_time_us; + unsigned int dll_threshold_ps = nand_info->max_chain_delay; + unsigned int period_ps, reference_period_ps; + unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; + unsigned int tRP_ps; + bool use_half_period; + int sample_delay_ps, sample_delay_factor; + u16 busy_timeout_cycles; + u8 wrn_dly_sel; + u32 timing0; + u32 timing1; + u32 ctrl1n; + + if (sdr->tRC_min >= 30000) { + /* ONFI non-EDO modes [0-3] */ + clk_rate = 22000000; + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + } else if (sdr->tRC_min >= 25000) { + /* ONFI EDO mode 4 */ + clk_rate = 80000000; + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + debug("%s, setting ONFI onfi edo 4\n", __func__); + } else { + /* ONFI EDO mode 5 */ + clk_rate = 100000000; + wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + debug("%s, setting ONFI onfi edo 5\n", __func__); + } + + /* SDR core timings are given in picoseconds */ + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate); + + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); + busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); + + timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) | + (data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) | + (data_setup_cycles << GPMI_TIMING0_DATA_SETUP_OFFSET); + timing1 = (busy_timeout_cycles * 4096) << GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET; + + /* + * Derive NFC ideal delay from {3}: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- + * RP + */ + if (period_ps > dll_threshold_ps) { + use_half_period = true; + reference_period_ps = period_ps / 2; + } else { + use_half_period = false; + reference_period_ps = period_ps; + } + + tRP_ps = data_setup_cycles * period_ps; + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; + if (sample_delay_ps > 0) + sample_delay_factor = sample_delay_ps / reference_period_ps; + else + sample_delay_factor = 0; + + ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET); + if (sample_delay_factor) + ctrl1n |= (sample_delay_factor << GPMI_CTRL1_RDN_DELAY_OFFSET) | + GPMI_CTRL1_DLL_ENABLE | + (use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0); + + writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0); + writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1); + + /* + * Clear several CTRL1 fields, DLL must be disabled when setting + * RDN_DELAY or HALF_PERIOD. + */ + writel(GPMI_CTRL1_CLEAR_MASK, &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr); + writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set); + + clk_set_rate(nand_info->gpmi_clk, clk_rate); + + /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ + dll_wait_time_us = USEC_PER_SEC / clk_rate * 64; + if (!dll_wait_time_us) + dll_wait_time_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_us); +} + +static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct nand_sdr_timings *sdr; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* Stop here if this call was just a check */ + if (chipnr < 0) + return 0; + + /* Do the actual derivation of the controller timings */ + mxs_compute_timings(chip, sdr); + + return 0; +} + int mxs_nand_init_spl(struct nand_chip *nand) { struct mxs_nand_info *nand_info; @@ -1432,6 +1629,9 @@ int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info) nand->read_buf = mxs_nand_read_buf; nand->write_buf = mxs_nand_write_buf; + if (nand_info->gpmi_clk) + nand->setup_data_interface = mxs_nand_setup_interface; + /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) goto err_free_buffers; diff --git a/drivers/mtd/nand/raw/mxs_nand_dt.c b/drivers/mtd/nand/raw/mxs_nand_dt.c index 94ee7ed9ec83..a922a22b2730 100644 --- a/drivers/mtd/nand/raw/mxs_nand_dt.c +++ b/drivers/mtd/nand/raw/mxs_nand_dt.c @@ -22,22 +22,27 @@ struct mxs_nand_dt_data { unsigned int max_ecc_strength_supported; + int max_chain_delay; /* See the async EDO mode */ }; static const struct mxs_nand_dt_data mxs_nand_imx6q_data = { .max_ecc_strength_supported = 40, + .max_chain_delay = 12000, }; static const struct mxs_nand_dt_data mxs_nand_imx6sx_data = { .max_ecc_strength_supported = 62, + .max_chain_delay = 12000, }; static const struct mxs_nand_dt_data mxs_nand_imx7d_data = { .max_ecc_strength_supported = 62, + .max_chain_delay = 12000, }; static const struct mxs_nand_dt_data mxs_nand_imx8qxp_data = { .max_ecc_strength_supported = 62, + .max_chain_delay = 12000, }; static const struct udevice_id mxs_nand_dt_ids[] = { @@ -72,8 +77,10 @@ static int mxs_nand_dt_probe(struct udevice *dev) int ret; data = (void *)dev_get_driver_data(dev); - if (data) + if (data) { info->max_ecc_strength_supported = data->max_ecc_strength_supported; + info->max_chain_delay = data->max_chain_delay; + } info->dev = dev; @@ -92,44 +99,49 @@ static int mxs_nand_dt_probe(struct udevice *dev) info->use_minimum_ecc = dev_read_bool(dev, "fsl,use-minimum-ecc"); - if (IS_ENABLED(CONFIG_CLK) && IS_ENABLED(CONFIG_IMX8)) { + if (IS_ENABLED(CONFIG_CLK) && + (IS_ENABLED(CONFIG_IMX8) || IS_ENABLED(CONFIG_IMX8M))) { /* Assigned clock already set clock */ struct clk gpmi_clk; - ret = clk_get_by_name(dev, "gpmi_io", &gpmi_clk); - if (ret < 0) { + info->gpmi_clk = devm_clk_get(dev, "gpmi_io"); + + if (IS_ERR(info->gpmi_clk)) { + ret = PTR_ERR(info->gpmi_clk); debug("Can't get gpmi io clk: %d\n", ret); return ret; } - ret = clk_enable(&gpmi_clk); + ret = clk_enable(info->gpmi_clk); if (ret < 0) { debug("Can't enable gpmi io clk: %d\n", ret); return ret; } - ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk); - if (ret < 0) { - debug("Can't get gpmi_apb clk: %d\n", ret); - return ret; - } - - ret = clk_enable(&gpmi_clk); - if (ret < 0) { - debug("Can't enable gpmi_apb clk: %d\n", ret); - return ret; - } - - ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk); - if (ret < 0) { - debug("Can't get gpmi_bch clk: %d\n", ret); - return ret; - } - - ret = clk_enable(&gpmi_clk); - if (ret < 0) { - debug("Can't enable gpmi_bch clk: %d\n", ret); - return ret; + if (IS_ENABLED(CONFIG_IMX8)) { + ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk); + if (ret < 0) { + debug("Can't get gpmi_apb clk: %d\n", ret); + return ret; + } + + ret = clk_enable(&gpmi_clk); + if (ret < 0) { + debug("Can't enable gpmi_apb clk: %d\n", ret); + return ret; + } + + ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk); + if (ret < 0) { + debug("Can't get gpmi_bch clk: %d\n", ret); + return ret; + } + + ret = clk_enable(&gpmi_clk); + if (ret < 0) { + debug("Can't enable gpmi_bch clk: %d\n", ret); + return ret; + } } ret = clk_get_by_name(dev, "gpmi_bch_apb", &gpmi_clk); diff --git a/include/mxs_nand.h b/include/mxs_nand.h index 741dc8734eae..bb5b84b8c26e 100644 --- a/include/mxs_nand.h +++ b/include/mxs_nand.h @@ -12,6 +12,7 @@ #include <asm/cache.h> #include <nand.h> #include <asm/mach-imx/dma.h> +#include <clk.h> /** * @gf_len: The length of Galois Field. (e.g., 13 or 14) @@ -43,6 +44,7 @@ struct mxs_nand_info { struct nand_chip chip; struct udevice *dev; unsigned int max_ecc_strength_supported; + int max_chain_delay; bool use_minimum_ecc; int cur_chip; @@ -59,6 +61,7 @@ struct mxs_nand_info { struct mxs_gpmi_regs *gpmi_regs; struct mxs_bch_regs *bch_regs; + struct clk *gpmi_clk; /* Functions with altered behaviour */ int (*hooked_read_oob)(struct mtd_info *mtd,